Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Poult Sci ; 102(10): 102965, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37562135

RESUMEN

Interleukin-9 receptor alpha chain (IL-9Rα) is the ligand-binding subunit of IL-9R that plays roles in IL-9-mediated allergy, inflammation, infection, and tumor immunity. While mammalian IL-9Rαs have been extensively investigated, avian IL-9Rα has not yet been identified and characterized. In this study, we cloned chicken IL-9Rα (chIL-9Rα) and performed a phylogenetic analysis, analyzed its tissue distribution, characterized the expression form of natural chIL-9Rα. Phylogenetic analysis showed that chIL-9Rα has less than 25% amino acid homology with mammalian IL-9Rαs. The chIL-9Rα mRNA was abundantly detected only in heart and mitogen-activated peripheral blood mononuclear cells. Furthermore, 4 monoclonal antibodies (mAbs) against chIL-9Rα were generated using prokaryotic recombinant chIL-9Rα (rchIL-9Rα). Using anti-chIL-9Rα mAbs, natural chIL-9Rα expressed on the splenocytes of chickens was observed by indirect immunofluorescence assay (IFA), and its molecular weight of 51 kDa was identified by Western blotting. Overall, our study reveals for the first time the presence of IL-9Rα in birds, and provides immunological tools for further investigating the roles of chIL-9 in diseases and immunity.


Asunto(s)
Pollos , Leucocitos Mononucleares , Animales , Pollos/genética , Receptores de Interleucina-9/genética , Filogenia , Anticuerpos Monoclonales , Interleucina-2 , Mamíferos
2.
Environ Toxicol ; 38(8): 1980-1988, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37148155

RESUMEN

Cadmium (Cd) can damage bone cells and cause osteoporosis. Osteocytes are the most numerous bone cells and also important target cells for Cd-induced osteotoxic damage. Autophagy plays important role in the progression of osteoporosis. However, osteocyte autophagy in Cd-induced bone injury is not well characterized. Thus, we established a Cd-induced bone injury model in BALB/c mice and a cellular damage model in MLO-Y4 cells. Aqueous Cd exposure for 16 months showed an increase in plasma alkaline phosphatase (ALP) activity and increase in urine calcium (Ca) and phosphorus (P) concentrations in vivo. Moreover, expression level of autophagy-related microtubule-associated protein 1A/1B-light chain 3 II (LC3II) and autophagy-related 5 (ATG5) proteins were induced, and the expression of sequestosome-1 (p62) was reduced, along with Cd-induced trabecular bone damage. In addition, Cd inhibited the phosphorylation of mammalian target of rapamycin (mTOR), protein kinase B (AKT), and phosphatidylinositol 3-kinase (PI3K). In vitro, 80 µM Cd concentrations exposure upregulated LC3II protein expression, and downregulated of p62 protein expression. Similarly, we found that treatment with 80 µM Cd resulted in a reduction in the phosphorylation levels of mTOR, AKT, and PI3K. Further experiments revealed that addition of rapamycin, an autophagy inducer, enhanced autophagy and alleviated the Cd-induced damage to MLO-Y4 cells. The findings of our study reveal for the first time that Cd causes damage to both bone and osteocytes, as well as induces autophagy in osteocytes and inhibits PI3K/AKT/mTOR signaling, which could be a protective mechanism against Cd-induced bone injury.


Asunto(s)
Osteoporosis , Proteínas Proto-Oncogénicas c-akt , Animales , Ratones , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasa/metabolismo , Cadmio/toxicidad , Fosfatidilinositol 3-Quinasas/metabolismo , Osteocitos/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Autofagia , Sirolimus/farmacología , Mamíferos/metabolismo
3.
Life (Basel) ; 12(10)2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-36295008

RESUMEN

Japanese quail is a highly economically valuable bird due to its commercial production for meat and eggs. Although studies have reported Cadmium (Cd) is a ubiquitous heavy metal that can cause injury to various organs, the molecular mechanisms of Cd on quail kidney injury remain largely unknown. It has been reported that Honokiol (HKL), a highly functional antioxidant, can protect cells against oxidative stress effectively. This study was conducted to investigate the effects of Cd on quail kidneys injury and the protective effect of HKL on Cd-induced nephrotoxicity. A total of 40 Japanese quails were randomly divided into four groups: the control group, Cd treatment group, Co-treatment group and HKL treatment group. The results showed that Cd resulted in significant changes in growth performance, kidney histopathology and kidney biochemical status, antioxidant enzymes and oxidative stress parameters, and ultrastructure of renal tubular epithelial cells, compared with controls. Cd increased the expression of autophagy-related and apoptosis-related genes, but decreased expression of lysosomal function-related and UPRmt-related genes. The co-treatment group ameliorated Cd-induced nephrotoxicity by alleviating oxidative stress, inhibiting apoptosis, repairing autophagy dysfunction and UPRmt disorder. In conclusion, dietary supplementation of HKL showed beneficial effects on Japanese quail kidney injury caused by Cd.

4.
Front Immunol ; 13: 889991, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35795670

RESUMEN

Interleukin-9 (IL-9) is a pleiotropic cytokine that acts on a variety of cells and tissues, and plays roles in inflammation and infection as well as tumor immunity. While mammalian IL-9s have been widely investigated, avian IL-9 has not yet been identified and characterized. In this study, we cloned chicken IL-9 (chIL-9) and performed a phylogenetic analysis, examined its tissue distribution, characterized the biological functions of recombinant chIL-9 (rchIL-9) and the expression form of natural chIL-9. Phylogenetic analysis showed that chIL-9 has less than 30% amino acid identity with mammalian IL-9s. The chIL-9 mRNA can be abundantly detected only in the testis and thymus, and are significantly up-regulated in peripheral blood mononuclear cells (PBMCs) upon mitogen stimulation. The rchIL-9 was produced by prokaryotic and eukaryotic expression systems and showed biological activity in activating monocytes/macrophages to produce inflammatory cytokines and promoting the proliferation of CD3+ T cells. In addition, four monoclonal antibodies (mAbs) and rabbit polyclonal antibody (pAb) against rchIL-9 were generated. Using anti-chIL-9 mAbs and pAb, natural chIL-9 expressed by the activated PBMCs of chickens with a molecular weight of 25kD was identified by Western-blotting. Collectively, our study reveals for the first time the presence of functional IL-9 in birds and lays the ground for further investigating the roles of chIL-9 in diseases and immunity.


Asunto(s)
Pollos , Interleucina-9 , Animales , Anticuerpos Monoclonales , Citocinas/genética , Interleucina-9/genética , Leucocitos Mononucleares , Mamíferos , Filogenia , Conejos
5.
Environ Toxicol ; 37(7): 1608-1617, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35257471

RESUMEN

Osteoclasts are the key target cells for cadmium (Cd)-induced bone metabolism diseases, while Rho GTPases play an important role in osteoclast differentiation and bone resorption. To identify new therapeutic targets of Cd-induced bone diseases; we evaluated signal transduction through Rho GTPases during osteoclast differentiation under the influence of Cd. In osteoclastic precursor cells, 10 nM Cd induced pseudopodia stretching, promoted cell migration, upregulated the levels of Cdc42, and RhoQ mRNAs and downstream Rho-associated coiled-coil kinase 1 (ROCK1) and ROCK2 proteins, and downregulated the actin-related protein 2/3 (ARP2/3) levels. Cd at 2 and 5 µM shortened the pseudopodia, inhibited cell migration, and decreased ROCK1, ROCK2, and ARP2/3 protein levels; Cd at 5 µM also reduced the mRNA expression levels of Rac1, Rac2, and RhoU mRNAs and decreased the level of phosphorylated (p)-cofilin. In osteoclasts, 10 nM Cd induced the formation of sealing zones, slightly upregulated Cdc42 mRNA levels and ROCK2 and ARP2/3 protein levels and significantly reduced p-cofilin levels. Cd at 2 µM and 5 µM Cd blocked the fusion of precursor cells; and 5 µM Cd downregulated the expression levels of RhoB, Rac1, Rac3, and RhoU mRNAs, and ROCK1, p-cofilin and ARP2/3 protein levels, significantly. In vivo, Cd (at 5 or 25 mg/L) increased the levels of key proteins RhoA, Rac1/2/3, Cdc42, and RhoU and their mRNAs in bone marrow cells. In summary, the results suggested that Cd affected the differentiation process of osteoclast and altered the expression of several Rho GTPases, which might be crucial targets of Cd during the differentiation of osteoclasts.


Asunto(s)
Osteoclastos , Proteínas de Unión al GTP rho , Factores Despolimerizantes de la Actina/metabolismo , Cadmio/metabolismo , Cadmio/toxicidad , Diferenciación Celular , Osteoclastos/metabolismo , ARN Mensajero/metabolismo , Transducción de Señal , Proteínas de Unión al GTP rho/genética , Proteínas de Unión al GTP rho/metabolismo
6.
Heliyon ; 8(12): e12446, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36593850

RESUMEN

Tumor necrosis factor alpha (TNF-α) is an important proinflammatory cytokine and the only known cytokine that can directly kill tumor cells. Unlike mammalian counterparts, chicken TNF-α (chTNF-α) gene has not been identified until very recently due to its high GC content (∼70%) and long GC fragments. The biological functions of this newly-identified cytokine and its detection methods remain to be further investigated. In this study, the extracellular domain of chTNF-α was cloned into prokaryotic vector after codon optimization and recombinant chTNF-α protein was expressed. Subsequently, using recombinant chTNF-ɑ as immunogen, rabbit polyclonal antibody (pAb) and eight clones of mouse anti-chTNF-ɑ monoclonal antibodies (mAbs) were produced, respectively. Both the pAb and mAbs specifically recognized recombinant chTNF-ɑ expressed in E.coli and transfected COS-7 cells. Further mapping the antigenic region showed that all the mAbs recognized a region of amino acid residues 195-285 of chTNF-ɑ. Furthermore, an antigen-capture enzyme-linked immunosorbent assay for the detection of chTNF-ɑ was established using one mAb and the pAb. This assay showed no cross-reactivity with irrelevant Trx-fused antigens and could detect natural chTNF-ɑ expressed by mitogen-activated chicken splenocytes in a dose-dependent manner, with a detection limit of 1 ng/mL. Collectively, our results indicated that the mAbs and pAb against chTNF-α are specific and could be used for the study of the biological functions of chTNF-ɑ and the detection of chTNF-ɑ.

7.
Curr Med Sci ; 41(6): 1123-1133, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34950987

RESUMEN

Chronic diseases are a growing concern worldwide, with nearly 25% of adults suffering from one or more chronic health conditions, thus placing a heavy burden on individuals, families, and healthcare systems. With the advent of the "Smart Healthcare" era, a series of cutting-edge technologies has brought new experiences to the management of chronic diseases. Among them, smart wearable technology not only helps people pursue a healthier lifestyle but also provides a continuous flow of healthcare data for disease diagnosis and treatment by actively recording physiological parameters and tracking the metabolic state. However, how to organize and analyze the data to achieve the ultimate goal of improving chronic disease management, in terms of quality of life, patient outcomes, and privacy protection, is an urgent issue that needs to be addressed. Artificial intelligence (AI) can provide intelligent suggestions by analyzing a patient's physiological data from wearable devices for the diagnosis and treatment of diseases. In addition, blockchain can improve healthcare services by authorizing decentralized data sharing, protecting the privacy of users, providing data empowerment, and ensuring the reliability of data management. Integrating AI, blockchain, and wearable technology could optimize the existing chronic disease management models, with a shift from a hospital-centered model to a patient-centered one. In this paper, we conceptually demonstrate a patient-centric technical framework based on AI, blockchain, and wearable technology and further explore the application of these integrated technologies in chronic disease management. Finally, the shortcomings of this new paradigm and future research directions are also discussed.


Asunto(s)
Inteligencia Artificial/tendencias , Cadena de Bloques/tendencias , Enfermedad Crónica , Atención a la Salud , Manejo de la Enfermedad , Dispositivos Electrónicos Vestibles/tendencias , Humanos , Invenciones
8.
J Hazard Mater ; 388: 121752, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-31796368

RESUMEN

Super-wetting MOFs@graphene hybrid has shown promising application for oil/water separation, due to high porosity, low density, and controllable wettability, however, achieving excellent stability and recyclability are found to be still challenging. In this study, sandwich-like UIO-66-F4@rGO hybrid was synthesized by immobilization of UIO-66-F4 nanoparticles on rGO matrix, which featured the unique micro/nano hierarchy with hydrophobic characteristics. In order to realize the oil/water separation, as-prepared sandwich-like UIO-66-F4@rGO hybrid was applied as a potential candidate for constructing robust super-hydrophobic/super-oleophilic interfaces by using filter paper (FP) and melamine sponge (MS) as substrates. Typically, the surface modification of substrates can be easily achieved by simple dip-coating method, and interfacial adhesion between substrates and UIO-66-F4@rGO was enhanced by cross-linking of hydroxyl-fluoropolysiloxane (FPSO). Consequently, the super-hydrophobic/oleophilic UIO-66-F4@rGO/FP exhibited high contact angle of 169.3 ± 0.6° and was capable of separating various water-in-oil emulsions effectively. The flux and separation efficiency were 990.45 ± 36.28 Lm-2 h-1 and 99.73 ± 0.19 % driven by gravity, respectively. The super-hydrophobic/super-oleophilic UIO-66-F4@rGO/MS possessed selective oil absorption with absorption capacity of 26∼61 g/g depending on the viscosity of oils and continuous cleaning of oil spill. Furthermore, the UIO-66-F4@rGO composite could tolerate high/low temperature, corrosive solutions, and physical damage, displaying robust and stable super-hydrophobic/super-oleophilic interfaces for treating oily wastewater in harsh environments.

9.
Environ Toxicol ; 35(4): 487-494, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31793751

RESUMEN

Cadmium (Cd) is a toxic heavy metal that represents an occupational hazard and environmental pollutant toxic heavy metal, which can cause osteoporosis following accumulation in the body. The purpose of this study was to investigate the effect of Cd on bone tissue osteoclast differentiation in vivo. Female BALB/c mice were randomly divided into three groups and given drinking water with various concentrations of Cd (0, 5, and 25 mg/L) for 16 weeks, after which the mice were sacrificed after collecting urine and blood. The level of Cd, calcium (Ca), phosphorus (P), trace elements, and some biochemical indicators were measured, and the bone was fixed in a 4% formaldehyde solution for histological observation. Bone marrow cells were isolated to determine the expression of osteoclast-associated mRNA and proteins. Cd was increased in the blood, urine, and bone in response to Cd in drinking water in a dose-dependent manner. The content of iron (Fe), manganese (Mn), and zinc (Zn) was significantly increased, whereas Ca and P were decreased in bone compared to the control group. Cd affected the histological structure of the bone, and induced the upregulation and downregulation of tartrate-resistant acid phosphatase 5b (TRACP-5b) and estradiol in the serum, respectively. Cd had no significant effect on the alkaline phosphatase activity in the serum. The expression of osteoclast marker proteins, including TRACP, cathepsin K, matrix metalloprotein 9, and carbonic anhydrases were all increased in the Cd-treated bone marrow cells. Cd significantly increased the expression of receptor activator of nuclear factor kappa B ligand (RANKL), but had lower effect on the expression of osteoprotegerin (OPG) in both bone marrow cells and bone tissue. Thus, Cd exposure destroyed the bone microstructure, promoted the formation of osteoclasts in the bone tissue, and accelerated bone resorption, in which the OPG/RANKL pathway may play an important role.


Asunto(s)
Resorción Ósea/inducido químicamente , Huesos/efectos de los fármacos , Cadmio/toxicidad , Diferenciación Celular/efectos de los fármacos , Contaminantes Ambientales/toxicidad , Osteoclastos/efectos de los fármacos , Animales , Células de la Médula Ósea/efectos de los fármacos , Células de la Médula Ósea/metabolismo , Células de la Médula Ósea/patología , Resorción Ósea/metabolismo , Resorción Ósea/patología , Huesos/metabolismo , Huesos/patología , Catepsina K/metabolismo , Femenino , Ratones , Ratones Endogámicos BALB C , Osteoclastos/metabolismo , Osteoclastos/patología , Osteoporosis/metabolismo , Osteoprotegerina/metabolismo , Ligando RANK/metabolismo , Fosfatasa Ácida Tartratorresistente/metabolismo
10.
J Colloid Interface Sci ; 529: 385-395, 2018 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-29940321

RESUMEN

Development of highly efficient and easy-handling absorbents for heavy metals removal is desirable for the remediation of our existing aquatic system. Herein, we demonstrated the novel bamboo-like polypyrrole nanofibrous mats for the removal of highly toxic hexavalent chromium (Cr(VI)) from aqueous solution. To achieve this target, the V2O5 nanofibrous templates were prepared via non-emulsion electrospinning technique and calcination, followed by in-situ polymerization of pyrrole. Benefiting from the special porous structure, high surface area and abundant adsorption active sites, the resulting bamboo-like polypyrrole nanofibrous mats exhibited a high Cr(VI) adsorption capacity up to 961.5 mg g-1 at room temperature, which can be well maintained for five adsorption/desorption cycles. The adsorption capacity for Cr(VI) can be enhanced with the decrease of pH and adsorption process belonged to the pseudo-second-order model. Furthermore, the adsorption isotherms of bamboo-like polypyrrole nanofibrous mats fitted the Langmuir isotherm model, and the adsorption mechanism of electrostatic attraction between bamboo-like polypyrrole nanofibers and Cr(VI) was presented. More importantly, the flexible and integrated bamboo-like polypyrrole nanofibrous membrane allowed easy handling during application, which is potentially used for heavy metal removal from aqueous solution.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...